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SYNTHESIS OF MEDIUM-SIZED LACTONES: IODOSODENZENE DIACETATE 

AN EFFICIENT REAGENT FOR fJ-FRAGMENTATION OF ALKOXY-RADICALS’ 
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SUMMARY: Photolysis of sever01 steroidal loctols in the presence of iodosobenzene diocetate 

(IBDA) and iodine leads to olkoxy-radicals, which undergo B-fragmentation to produce medium- 

sized lactones in good yields. 

We hove recently introduced iodosobenzene diacetate'(IBDA)-iodine, as a reagent to 

generate alkoxy3 and neutral ominyl 
4 

radicals, which are able intramolecularly to abstract one 

hydrogen atom to produce cyclic ethers and 1,4-epimino compounds, respectively. We have also 

used this reagent to decorboxylate carboxylic acids. 
5 

The system IBDA-iodine was found to be superior to the heavy metal derivatives 

customarily used for these reactions, such us lead tetraocetate and mercuric oxide. Continuing 

our interest in the study of iodine(II1) derivatives OS mild oxidizing reagents for the 

generation of olkoxy-radicals, we describe here the reaction of IBDA-iodine with y- and 6- 

lactols, by photolysis with two 100-W tungsten-filament lamps. This reaction produces medium- 

sized lactones in good yields, through ring-expansion. 

Previously reported syntheses6 of medium-sized loctones by ring expansion reactions, 

usually involving more steps and strong oxidation conditions, have moderate yields. As we 

learned after completion of this work, o synthesis of medium-sized lactones hos been achieved 

by Yamado and Suginome7, by irradiation with o high-pressure mercury lamp, of the hypoiodites 

of y- and 6-loctols in the presence of on excess of mercury (II) oxide and iodine. 

We extended our reaction to different types of steroidal lactols. Therefore, ring- 

expansion of y-loctol (1)8 (Scheme 1) (1 mmol) WQS accomplished by reaction with iodosobenzene 

diocetote (1.1 mmol) and iodine (1 mmol) in cyclohexane (100 ml) and irradiation, under argon, 

with visible light from two 100-W tungsten-filoment lamps for lh. at 40°c, yielding 185%) a 

mixture of the olefinic lactones (2)9 and (3)" in a 1:l ratio, which was separated by column 

chromatography with benzene:n-hexone 8:2 as eluant. In the 'HNMR spectrum of (2) broad signals 

are observed for the protons, at C-2 and at C-19, as a consequence of the slow conformational 
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interconvertion of the nine-membered lactone ring. A similar situation is observed for 

several carbons in its 
13 

CNMR spectrum. Nevertheless the AMX system formed by the protons at 

C-l ond C-2 is clearly distinguished in the 'HNMR spectrum of lactone (3). 

This reaction takes place similarly with the d-lactol (4)", although a longer time is 

required (6h.). Thus, lactones (5)12, (6)13 and (7)14 were obtained with an 83% yield in a 

1:2:2 rotio, after careful chromatography. 

As expected, the slow conformationol equilibrium of the ten-membered lactone ring is 

also observed in the methylene-lactone (5). The Z or E configurations of the 
*l-10 

olefin in 

lactones (6) and (7) were determined by 
13 15 

CNMR spectroscopy . The observed deshielding of the 

C-19 signal by 5.5 ppm in the 13CNMR spectrum of (7) indicates that the olefin has a Z- 

configuration. 

The ?'-lactol (8)16, that in solution is in equilibrium with the ring-opened form, was 
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characterized as its methylacetal derivative (9). 
17 

The photolysis of (8) with IBDA-iodine for 

1.5 h. gave the iodo-lactone (10) 
18 . 

with 81% yield that exhibits the signals corresponding to 

the protons at C-15 and C-22 as the AM parts of two AMX systems, and a broad singlet at 

63.92 ossigned to the proton ot C-17, geminal to the iodine atom. 

These results ore consistent with o mechanism of @-fragmentotion of alkoxy-radicals os 

shown in Scheme 2. 
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where n and m ore (2,4), (3,4 

systems is in progress. 
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11 R,= I(OAc)Ph 

12 R,=I 

The intermediates (111 (R2=H or Me), produced by equilibrium metathesis of IBFA with the 

loctol, and the hypoiodite (12) are expected to be the species that by photolysis generate the 

alkoxy-radicals. The B-fragmentation reaction leads to the carbon-radical (13) that gives rise 

to the olefins in the case of tertiary radicals (13, R2=Me) or iodine compounds if it is 

secondary (13, R2=H). 

It is deduced from the above that the reaction proceeds satisfactorily for those cases 

and (2,3). The extension of this method to other cyclic 

s work was supported by the Investigation Programme of the 
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